5 Dari soal no.3, tentukan masing-masing koefisien variasinya dan simpulkan dari koefisien variasi tersebut! 6. Dari data: 6, 10, 2, 12, 4, 7, dan 8. a. Rata-rata dan simpangan baku. b. Angka baku dari data 2 dan 8. c. Koefisien variasi. 7. Lakukan hal yang sama seperti nomor 6 dari data: x. 8.
Jawab Untuk Malaysia 1500 KV = x 100 =30 5000 Untuk Indonesia 800000 KV = x 100 =32 2500000 Jadi, penduduk yang lebih merata pendapatannya adalah Malaysia karena koefisien variasinya lebih kecil daripada Indonesia yaitu sebesar 30%. Contoh Perhitungan Koefisien Variasi data tunggal dan kelompok Perhitungan data Koefisien Variasi dengan
12. Tujuan dan manfaat. Tujuan dari penulisan makalah ini adalah agar pembaca mengetahui, memahami dan menambah wawasan tentang statistika yang meliputi, ukuran pemusatan dan ukuran dispersi yaitu: rata-rata hitung (mean),rentang,rata-rata simpangan,simpangan baku,varians,koefisien variasi,angka baku Z. Manfaat dari pembuatan makalah ini
RSD Horwitz = 2 (1 - 0.5 log C) Dimana C, adalah konsentrasi analit dinyatakan sebagai fraksi massa berdimensi (pembilang dan penyebut memiliki satuan yang sama); dan RSDR adalah koefisien variasi CV dalam kondisi reproducibility. Tabel 3.9 Hubungan Konsentrasi dengan RSD. Konsentrasi Analit RSD. 10% 2,8%. 1 % 4,0 %.
. Unduh PDF Unduh PDF Varians adalah ukuran seberapa tersebarnya data. Varians yang rendah menandakan data yang berkelompok dekat satu sama lain. Varians yang tinggi menandakan data yang lebih tersebar. Konsep ini memiliki banyak kegunaan di dalam statistik. Misalnya, membandingkan varians dari dua kelompok data seperti hasil dari pasien laki-laki dan perempuan adalah salah satu cara untuk menguji apakah sebuah variabel memiliki efek yang dapat diamati.[1] Varians juga berguna saat membuat model statistik, karena varians yang rendah menandakan data yang over-fitting.[2] 1 Dapatkan data sampel. Dalam banyak kasus, ahli statistik hanya mendapatkan data sampel, atau sebagian dari populasi yang sedang mereka teliti. Misalnya, alih-alih menganalisis populasi "harga setiap mobil di Jerman", seorang ahli statistik dapat mencari harga dari sampel acak beberapa ribu mobil. Ia dapat menggunakan sampel ini untuk mendapatkan estimasi harga mobil di Jerman, namun hasilnya mungkin tidak sama dengan hasil sebenarnya. Contoh Untuk menganalisis jumlah kue muffin yang terjual setiap hari di sebuah kafetaria, Anda mengumpulkan data dari enam hari acak dan memperoleh hasil sebagai berikut 17, 15, 23, 7, 9, 13. Data ini adalah sebuah sampel, bukan data populasi, karena Anda tidak mempunyai data penjualan setiap hari sejak kafetaria itu dibuka. Jika Anda memiliki "semua" data dari sebuah populasi, langsung lompat ke metode berikutnya. 2 Tuliskan rumus varians sampel. Varians dari sejumlah data menunjukkan seberapa tersebarnya data. Semakin varians mendekati nol, semakin data berkelompok. Ketika menggunakan data sampel, gunakan rumus berikut untuk menghitung varians[3] 3 Hitung mean dari sampel. Simbol x̅ menandakan mean dari sebuah sampel.[4] Hitung sebagaimana Anda menghitung mean jumlahkan semua data, lalu membaginya dengan jumlah data. Contoh Mula-mula, jumlahkan semua data 17 + 15 + 23 + 7 + 9 + 13 = 84Lalu, bagi jawabannya dengan jumlah data, dalam contoh ini dengan enam 84 ÷ 6 = sampel = x̅ = 14. Anda dapat menganggap mean sebagai "titik tengah" dari data. Jika data berkumpul di sekitar mean, variansnya rendah. Jika data tersebar jauh dari mean, variansnya tinggi. 4 Kurangkan nilai setiap data dengan mean. Sekarang kita menghitung - x̅, di mana adalah nilai dari tiap data. Setiap hasil menggambarkan deviasi data dari mean, atau dalam bahasa sederhana, seberapa jauh data dari mean.[5] . 5 Kuadratkan hasilnya. Seperti yang telah dijelaskan sebelumnya, jumlah dari seluruh nilai deviasi - x̅ akan sama dengan nol. Ini artinya "rata-rata deviasi" akan selalu sama dengan nol, dan hal ini tidak memberikan informasi apa-apa tentang sebaran data. Untuk menyelesaikan masalah ini, kita mengkuadratkan nilai setiap deviasi. Ini akan membuat angkanya menjadi positif semua, sehingga nilai negatif dan positif tidak saling menghilangkan.[6] 6 7 Bagi dengan n - 1, di mana n adalah jumlah data. Dulu, para ahli statistik hanya membagi dengan n ketika menghitung varians sampel. Dengan demikian kita mendapat nilai rata-rata dari deviasi kuadrat, yang cocok untuk menghitung varians sampel tersebut. Tetapi ingatlah, sebuah sampel hanyalah estimasi dari populasi yang lebih besar. Jika kita mengambil sampel lain secara acak dan melakukan perhitungan, hasilnya akan berbeda. Tampaknya, membagi dengan n - 1 ketimbang n memberi perkiraan nilai varians yang lebih baik untuk populasi, yang sebetulnya ingin kita ketahui. Koreksi ini sudah menjadi begitu umum sehingga sekarang diterima sebagai definisi dari varians.[7] Contoh Ada enam data di dalam contoh ini, jadi n = sampel adalah = 8 Pahami varians dan standar deviasi. Ingatlah bahwa di dalam rumus ini ada pengkuadratan, varians diukur dalam unit kuadrat dari data asli. Hal ini membuat kita sulit untuk memahami data secara intuitif. Oleh karena itu ada baiknya kita menggunakan standar deviasi. Anda tidak perlu repot-repot, karena standar deviasi didefinisikan sebagai akar kuadrat dari varians. Oleh karena itu varians sampel dituliskan dengan , dan standar deviasi sampel dengan . Misalnya, standar deviasi sampel dari contoh di atas adalah = s = √ = Iklan 1 Mulailah dengan sejumlah data populasi. Istilah "populasi" mengacu pada semua pengamatan yang relevan. Misalnya, jika kita ingin meneliti tentang usia penduduk Texas, populasi yang kita gunakan adalah usia setiap orang yang tinggal di Texas. Kita mungkin butuh membuat lembar kerja spreadsheet untuk data sebesar itu, tetapi mari kita gunakan data yang lebih kecil sebagai contoh 2 Tuliskan rumus varians populasi. Karena populasi memiliki semua data yang kita perlukan, rumus ini bisa kita gunakan untuk menghitung secara tepat varians populasi. Untuk membedakannya dengan varians sampel yang hanya estimasi, ahli statistik menggunakan variabel yang berbeda[8] 3 Cari mean populasi. Ketika menganalisis sebuah populasi, simbol μ "mu" melambangkan rata-rata aritmetik. Untuk mencari mean, jumlahkan semua data, lalu bagi dengan jumlah data. Anda mungkin mengira bahwa mean sama dengan "rata-rata". Berhati-hatilah sebab kata itu memiliki banyak definisi dalam matematika. Contoh mean = μ = = 4 Kurangkan setiap data dengan mean. Data yang lebih dekat dengan mean akan menghasilkan selisih yang lebih dekat dengan nol. Ulangi pengurangan untuk setiap data, dan Anda dapat mulai mengamati seberapa tersebarnya data. 5 Kuadratkan setiap hasil. Sekarang kita bisa melihat bahwa beberapa angka negatif dihasilkan dari proses sebelumnya, dan beberapa yang lain positif. Jika Anda membayangkan data-data tersebut pada sebuah garis bilangan, kedua kategori ini mewakili data yang berada di sebelah kiri dan sebelah kanan mean. Hal ini tidak berguna dalam menghitung varians, karena kedua kelompok ini akan saling menghilangkan. Kuadratkanlah setiap angka supaya mereka menjadi positif. 6 Cari mean dari hasil. Sekarang Anda telah memperoleh sebuah nilai untuk setiap data, yang berhubungan secara tidak langsung dengan jarak data tersebut dari mean. Cari mean dari hasil ini dengan menjumlahkan mereka semuanya, lalu dibagi dengan jumlah angka. ContohVarians dari populasi = 7 Hubungan dengan rumus semula. Jika Anda ragu apakah perhitungan ini sama dengan rumus yang diberikan di awal, coba tuliskan seluruh perhitungan secara panjang Iklan Karena kita sulit untuk menginterpretasi nilai varians, nilai ini biasanya dipakai sebagai dasar untuk menghitung standar deviasi. Penggunaan "n-1" ketimbang "n" dalam penyebut ketika menganalisis sampel adalah sebuah teknik yang dikenal dengan koreksi Bessel. Sampel hanyalah sebuah perkiraan dari seluruh populasi, dan mean dari sampel mengalami bias dalam estimasi. Koreksi ini menghilangkan bias tersebut.[9] Hal ini terjadi karena begitu Anda memilih n - 1 data, data n terakhir sudah tertentu, karena hanya nilai tertentu yang dapat menghasilkan mean dari sampel x̅ yang digunakan dalam rumus varians.[10] Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Koefisien Variasi adalah perbandingan Simpangan Baku Standar Deviasi dengan Rata-rata Hitung dan dinyatakan dalam bentuk persentase. Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya. Semakin kecil koefisien variasi maka data semakin homogen seragam, sedangkan semakin besar koefisien variasi maka data semakin heterogen bervariasi. Rumus Koefisien Variasi \[\boxed{kv = \frac{s}{\bar{x}} \times 100\%}\] Keterangan \kv =\ koefisien variasi \s =\ standar deviasi \\bar{x} =\ rata-rata hitung Contoh Soal Rata-rata nilai ujian statistika mahasiswa jurusan ekonomi adalah 75 dengan standar deviasi 9. Berapakah koefisien variasi nilai ujian statistika mahasiswa tersebut. Penyelesaian Diketahui \\bar{x} = 75\ dan \s = 9,\ maka koefisien variasinya adalah \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{9}{75} \times 100\%\\ &= 12\% \end{aligned}\] Koefisien variasi nilai ujian statistika mahasiswa jurusan ekonomi adalah \12\%.\ Hasil ujicoba tes IQ kepada beberapa orang mahasiswa adalah sebagai berikut \[135, 110, 140, 100, 115, 110, 130\] Hitunglah koefisien variasi hasil tes IQ mahasiswa tersebut! Penyelesaian Nilai yang dibutuhkan untuk menghitung koefisien variasi adalah rata-rata hitung \\bar{x}\ dan standar deviasi/simpangan baku \s.\ Langkah pertama yang harus kita lakukan adalah menghitung rata-rata hitung \\bar{x}\ terlebih dahulu. \[\begin{aligned} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i\\ &= \frac{1}{7} 135+ 110+ 140+ 100+ 115+ 110+ 130\\ &= \frac{1}{7} 840\\ &= 120 \end{aligned}\] Selanjutnya hitung standar deviasi dengan memanfaatkan tabel berikut. \x_i\ \x_i - \bar{x}\ \x_i - \bar{x}^2\ 135 15 225 110 -10 100 140 20 400 100 -20 400 115 -5 25 110 -10 100 130 10 100 \\displaystyle \sum_{i=1}^{7} x_i - \bar{x}^2 =\ 1350 Nilai standar deviasi dihitung menggunakan rumus \[\begin{aligned} s &= \sqrt{\frac{1}{n-1} \sum_{i=1}^n x_i - \bar{x}^2}\\ &= \sqrt{\frac{1}{7-1} 1350}\\ &= \sqrt{225}\\ &= 15 \end{aligned}\] Selanjutnya koefisien korelasi dihitung dengan rumus \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{15}{120} \times 100\%\\ &= 12{,}5\% \end{aligned}\] Koefisien variasi hasil tes IQ mahasiswa adalah \12{,}5.\
Koefisien variasi deviasi standar relatif adalah ukuran statistik dari penyebaran titik data di sekitar mean. Metrik biasanya digunakan untuk membandingkan penyebaran data antara rangkaian data yang berbeda. Berbeda dengan Standar Deviasi Standar Deviasi Dari sudut pandang statistik, standar deviasi suatu kumpulan data adalah ukuran besarnya deviasi antar nilai pengamatan yang terkandung yang harus selalu diperhatikan dalam konteks mean data, koefisien Variasi menyediakan alat yang relatif sederhana dan cepat untuk membandingkan rangkaian data yang bidang keuangan, koefisien variasi penting dalam pemilihan investasi. Dari perspektif keuangan, metrik keuangan mewakili Risiko-ke-penghargaan Risiko dan Pengembalian Dalam investasi, risiko dan pengembalian sangat berkorelasi. Potensi pengembalian investasi yang meningkat biasanya berjalan seiring dengan peningkatan risiko. Berbagai jenis risiko termasuk risiko khusus proyek, risiko khusus industri, risiko kompetitif, risiko internasional, dan risiko pasar. rasio di mana volatilitas menunjukkan risiko investasi dan mean menunjukkan imbalan menentukan koefisien variasi dari sekuritas yang berbeda Sekuritas Publik Sekuritas publik, atau sekuritas yang dapat dipasarkan, adalah investasi yang secara terbuka atau mudah diperdagangkan di pasar. Sekuritas dapat berupa ekuitas atau berbasis hutang. , seorang investor mengidentifikasi rasio risiko-ke-penghargaan dari setiap sekuritas dan mengembangkan keputusan investasi. Umumnya, seorang investor mencari sekuritas dengan koefisien variasi yang lebih rendah karena memberikan rasio risiko-ke-imbalan paling optimal dengan volatilitas rendah tetapi pengembalian tinggi. Namun, koefisien yang rendah tidak menguntungkan ketika rata-rata pengembalian yang diharapkan di bawah Koefisien VariasiSecara matematis, rumus standar untuk koefisien variasi dinyatakan sebagai berikutDimana - deviasi standarμ - artinyaDalam konteks keuangan Finance Finance's Finance Articles dirancang sebagai panduan belajar mandiri untuk mempelajari konsep keuangan penting secara online sesuai kemampuan Anda. Jelajahi ratusan artikel! , rumus di atas dapat ditulis ulang dengan cara sebagai berikutContoh Koefisien VariasiFred ingin mencari investasi baru untuk portofolionya. Dia mencari investasi yang aman yang memberikan pengembalian yang stabil. Dia mempertimbangkan opsi investasi berikutSaham Fred ditawari saham ABC Corp. Ini adalah perusahaan yang matang dengan kinerja operasional dan keuangan yang kuat. Volatilitas saham adalah 10% dan pengembalian yang diharapkan adalah 14%.ETF Opsi lainnya adalah Exchange-Traded Fund ETF Exchange Traded Fund ETF Exchange Traded Fund ETF adalah sarana investasi populer di mana portofolio dapat lebih fleksibel dan terdiversifikasi di berbagai kelas aset yang tersedia. Pelajari tentang berbagai jenis ETF dengan membaca panduan ini. yang melacak kinerja indeks S&P 500. ETF menawarkan pengembalian yang diharapkan sebesar 13% dengan volatilitas 7%.Obligasi Obligasi dengan peringkat kredit yang sangat baik menawarkan pengembalian yang diharapkan sebesar 3% dengan volatilitas 2%.Untuk memilih peluang investasi yang paling sesuai, Fred memutuskan untuk menghitung koefisien variasi dari setiap opsi. Dengan menggunakan rumus di atas, dia memperoleh hasil sebagai berikutBerdasarkan kalkulasi di atas, Fred ingin berinvestasi di ETF karena menawarkan koefisien variasi paling rendah dengan rasio risk-to-reward paling TerkaitFinance menawarkan Financial Modeling & Valuation Analyst FMVA ™ Sertifikasi FMVA. Bergabunglah dengan siswa yang bekerja untuk perusahaan seperti Amazon, JP Morgan, dan program sertifikasi Ferrari bagi mereka yang ingin meningkatkan karir mereka ke level berikutnya. Untuk terus belajar dan memajukan karier Anda, sumber daya Keuangan berikut akan membantuBerinvestasi Panduan Pemula Berinvestasi Panduan Pemula Panduan Keuangan Berinvestasi untuk Pemula akan mengajarkan Anda dasar-dasar berinvestasi dan bagaimana memulai. Pelajari tentang berbagai strategi dan teknik untuk perdagangan, dan tentang pasar keuangan yang berbeda tempat Anda dapat Indeks Dana Indeks Dana indeks adalah reksa dana atau dana yang diperdagangkan di bursa ETF yang dirancang untuk melacak kinerja indeks pasar. Dana indeks yang tersedia saat ini melacak berbagai indeks pasar, termasuk S&P 500, Russell 2000, dan FTSE Portofolio Manajer Portofolio Manajer portofolio mengelola portofolio investasi menggunakan proses manajemen portofolio enam langkah. Pelajari dengan tepat apa yang dilakukan manajer portofolio dalam panduan ini. Manajer portofolio adalah profesional yang mengelola portofolio investasi, dengan tujuan mencapai tujuan investasi klien Sistemik Risiko Sistemik Risiko sistemik dapat didefinisikan sebagai risiko yang terkait dengan runtuhnya atau kegagalan suatu perusahaan, industri, lembaga keuangan atau perekonomian secara keseluruhan. Ini adalah risiko kegagalan besar sistem keuangan, di mana krisis terjadi ketika penyedia modal kehilangan kepercayaan kepada pengguna modal.
Discover the world's research25+ million members160+ million publication billion citationsJoin for free Persentase Statistika Pendidikan Matematika Ukuran VariasiDi presentasikan pada kuliah Statistika Pendidikan Matematika Program Pascasarjana Universitas Negeri Medan Prodi Pendidikan MatematikaOleh Rizki Kurniawan Rangkuti Ukuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil PkUkuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil Pk Ukuran VariasiUkuran pemusatan dapat digunakan untuk menampilkan ringkasan data dalam suatu nilai tunggal yang menunjukkan rata-rata distribusi. Sekumpulan data mempunyai unsur-unsur yang nilainya bervariasi dan dua distribusi data atau lebih mungkin memiliki nilai pusat yang sama tetapi variasinya berbeda. Ilustrasi berikut dapat menunjukkan kondisi tersebut Departemen Produksi PT STAR’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997 adalah 6 7 8 7 7Departemen Produksi PT FRESH’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997adalah 3 5 7 9 11Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Bila diperoleh nilai ukuran variasi yang kecil berarti tingkat keragaman data rendah, nilai-nilai observasi banyak terkonsentrasi disekitar nilai pusat. Sebaliknya bila nilai ukuran variasi yang diperoleh besar maka tingkat keragaman data besar, karena nilai-nilai observasi yang diperoleh saling berjauhan. Ukuran variasi dibedakan menjadi ukuran variasi absolut dan ukuran variasi ukuran variasi antara lain range, simpangan absolut rata-rata, variance dan standar deviasi, dan koefisien variasi, Ukuran variasi absolut digunakan untuk membandingkan suatu ukuran variasi dengan ukuran variasi lain dalam populasi yang sama.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang variasi relatif pada umumnya digunakan untuk membandingkan beberapa ukuran variasi dari beberapa populasi dengan unit pengukuran yang berbeda.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang berbeda. A. Range Rentang atau JangkauanRange adalah selisih antara nilai maksimum dengan nilai minimum dalam suatu gugus data. Sesuai dengan rumusnya, range dicari dengan melibatkan dua nilai saja, yaitu nilai terbesar dan nilai terkecil. Sebagai contoh diketahui nilai minimumnya $ dan maksimumnya $ Maka rentang range adalah $ - $ = $ B. Simpangan Absolut Rata-Rata Mean Absolut Deviation = MADSimpangan absolut rata-rata adalah jumlah mutlak penyimpangan setiap nilai pengamatan nilai rata-rata, dibagi banyaknya pengamatan. Simpangan absolut rata-rata mencerminkan rata-rata selisih mutlak nilai data terhadap nilai rata-rata. Untuk data yang tidak berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasiNXXMADNii1iXXN Untuk data yang berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasi = Frekuensi kelas ke-i i=1,2,3,...,kiXXNNXXfMADNiii1if C. Ragam Variance dan Standar DeviationRagam variance adalah jumlah kuadrat dari selisih nilai observasi dengan rata-rata hitung dibagi banyaknya observasi. Sedangkan standar deviasi adalah akar dari ragam tersebut. Ragam populasi yang tidak berkelompok dapat dihitung dengan formula NNXXNXNiNiiiNii1212122 Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. 111212122nnXXnXXSniniiinii Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan NNXfXfNiNiiiii12122..1..12122nnXfXfSniniiiii D. Koefisien Variasi Koefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. D. Koefisien VariasiKoefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. Koefisien variasi diperoleh dengan rumus untuk populasi untuk sampel%100.KV% E. Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai ekstrem. Rumus kuartil untuk data berkelompok adalah Dimana Qk = Kuartil ke kB1 = Batas bawah nyata kelas yang mengandung Qk cfb = Frekuensi komulatif di bawah kelas yang berisi QkfQ = Frekuensi kelas yang mengandung Qki = Interval Kelask = 1, 2, 3N = Banyaknya F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah Dimana Pk = Persentil ke kB1 = Batas bawah nyata kelas yang mengandung persentil ke-kcfb = Frekuensi komulatif di bawah kelas yang berisi Pk i = Interval Kelasfp = Frekuensi kelas yang mengandung Pkk = 1, 2, 3,...,99N = Banyaknya observasi Terima Kasih Atas Perhatiannya ResearchGate has not been able to resolve any citations for this has not been able to resolve any references for this publication.
koefisien variasi dari data 6 10 6 10 adalah